
SECURITY CLASSIFICATION OP THIS PAGE

REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY

2b. OECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUM8£R(S)

NRL Memorandum Report 6026

6a. NAME OF PERFORMING ORGANIZATION

Naval Research Laboratory

6b. OFFICE SYMBOL
(If applicable)

Code 5720

5c ADDRESS (Oty, State, and ZIP Code)

Washington, DC 20375-5000

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

Office of Naval Research

8b. OFFICE SYMBOL
(If applicable)

8c ADDRESS (City, State, and ZIP Code)

Arlington, VA 22217

lb. RESTRICTIVE MARKINGS

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
unlimited.

5. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

7b. ADDRESS (C/ty, State, and ZIP Code)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNDlNlG NUMBERS

PROGRAM
ELEMENT NO.

PE62111N

PROJECT
NO. PEll

E60

TASK
NO.

WORK UNIT
ACCESSION NO.

EX155-640

11 TITLE (Include Security Classification)

Evaluation of the Very High Speed Microprocessor Breadboard

12. PERSONAL AUTHOR(S)

Christiansen, Ross M.
13a. TYPE OF REPORT
Interim

13b. TIME COVERED
FROM TO .

14. DATE OF REPORT (Year, Month, Day)

1'^H7 .July 21
15. PAGE COUNT

30

16. SUPPLEMENTARY NOTATION

17. COSATI COOES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Computers Processors Microprocessors
EW ESM Benchmarks
Gibson Mix .AYK-14

19. ABSTRACT {Continue on reverse if necessary and identify by block number)

This report covers evaluation of the Very High Speed Microprocessor
(VHSM) breadboard performance and application cost effectiveness. Execution
rates of 1.7 MIPS for the Gibson mix and 2.9 to 3.6 MIPS for EW applications
have been measured. Comparisons are made to various military and commercial
computer products. Use of all levels of language programmability, including
extended instructions, are demonstrated.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

Ix! UNCLASSIFIED/UNLIMITED D SAME AS RPT. D DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL
Ross M. Christiansen

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
22b. TELEPHONE (Include Area Code)

f202) 767-7f^S-^

22c. OFFICE SYMBOL

Code 5720

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted.

All other editions are obsolete.
SECURITY CLASSIFICATION OF THIS PAGE

Naval Research Laboratory
/r Washington, DC 20375-5000

100HOS 3iVnQVa9iS0d 1VAVN
NOISIAIQ SliBOdBa Ha8V3S:

NRL-Memorandum Report~6026

Evaluation of the Very High Speed
"~ Microprocessor Breadboard

>/R. M. CHRISTIANSEN

Electronic Warfare Support Measures Branch
Tactical Electronic Warfare Division

1987

Approved for public release; distribution unlimited.

CONTENTS

INTRODUCTION 1

TEST PROGRAMS 3

Gibson Mix 4
EW Instruction Mix 6
Puzzle 7
Statistics g
EW Tracker Algorithm 8
EW Sort Algorithm 8
Track Update Algorithm 9
Radar Data Processing 9

EXECUTION RATE PERFORMANCE 9

COMPARISON TO THE AYK-14 10

COMPARISON TO OTHER PROCESSORS 13

AYK-14 Single Card Processor (SCP) 13
National Series 32000 (NS32000) 16
Microprogrammed Bi-polar 16
VHSIC Signal Processor 16

PROGRAMMABILITY AND LANGUAGE DEPENDENT VARIATIONS 18

EW Tracker Algorithm 18
EW Sort Algorithm 21
Track Update Algorithm 21

DATA DEPENDENT VARIATIONS 21

EW Tracker Algorithm 21

SUMMARY AND CONCLUSIONS 24

ACKNOWLEDGMENTS 25

REFERENCES ^^ 25

EVALUATION OF THE VERY HIGH SPEED

MICROPROCESSOR BREADBOARD

INTRODUCTION

The Very High Speed Microprocessor (VHSM) program has been
addressing cost-effective signal processing in electronic warfare
(EW) systems.(Ref. 1) Experience over the useful life cycle of
numerous computer/processor designs has shown that the cost of
software development and maintenance will be many times more than
the hardware costs. Studies have shown that software typically
accounts for 80% of a computer system's life cycle cost, and this
number is expected to grow to 90% by 1990. (Ref. 2) Cost
effectiveness in the VHSM has been addressed through the
establishment of a microprocessor architecture that achieves optimum
throughput efficiency in EW and other applications, a
macroarchitecture compatible with existing support software, and
programmability by common familiar and military standard higher
order languages.

Significant cost savings can be achieved by basing new
processor designs on familiar characteristics rather than creating
new unfamiliar characteristics. These characteristics are reflected

■primarily in the instructions executed by the processor, i.e., -Ghe
macroarchitecture. The VHSM was designed to operate with an
instruction set based on an extension of the AN/AYK-14 instruction
set. This permits use of Navy standard support software hosted on
all popular computer systems and programmability by both popular
(FORTRAN) and military standard (CMS-2) higher order langauge. It.
can be expected that the Navy will eventually modify its standard
support software to permit programming of the AN/AYK-14 by Ada.
Since the VHSM is compatible with the AN/AYK-14 support software, it
too will be programmable by Ada.

Evaluation testing reported here was performed on the
first-generation feasibility breadboard (VHSM-1) which was
implemented using commonly available discrete devices and a bit
slice ALU. Performance was optimized through the incorporation of
several hardware speed-up techniques such as instruction pipelining,
split memory, and path length minimization. Special consideration
during the development of the architecture concept resulted in a
technologically tolerant system architecture. A second-generation
feasibility breadboard (VHSM-2) is currently being implemented using
advanced large scale CMOS gate array technology. (Ref. 3)

Test programs were developed to demonstrate and evaluate
numerous features of the VHSM architecture, as well as its basic
execution rate performance. VHSM execution performance was evaluated
by measuring the execution of a number of test programs on the
feasibility breadboard. Comparison has been made to the AYK-14 using
the MTASS AYK-14 timing simulation and execution of several test
programs on an actual AYK-14 computer. Comparison has also been made
to several newer state-of-the-art microprocessor systems.

Manuscript approved April 9. 1987.

ihe concept of "testing a computer" is quite ambiguous and the
results often misleading when taken out of context. T^st^""'^ pro-
cedures are controversial and there are no commonly recognized
standard tests which fully define performance. The verv concept of
"performance" is vague. Most often, performance is simplistica^ly
defined as "throughput". Throughput is actually the rate at which
transactions are presented to, and disposed of, by a system. This
actually involves the broad concept of performing a work function.
In many cases throughput is translated into execution rate, which is
a more narrow concept.

Computers are used to perform work. Measuring work involves
much more than just measuring how fast the computer can execute
instructions. In reality, many other features of a ccmcuter system
determine how much work can be performed. These features have to do
largely with the means of performing input and output functions.
These are also very complex functions, and often wind UD being the
real limiting factors in how much work can be performed*by a system.
The VHSM-1 breadboard was not intended to represent a complete
computer system, and was not capable of performing work in this
context as it is presently configured. The subject of input/output
functions are being addressed in a subsequent phase of the program.

One of the commonest oversights in computer testing is to
attempt to measure performance without due consideration of
software. Several of these methods have been lumped together as
"bad" approaches to first cut performance analysis. (Ref. 4) Two of
these "softwareless" approaches involve the use of standard'test
programs which are commonly used to make side-by-side comparisons
between hardware systems. This approach involves the use of
instruction mixes and benchmarks. Both of these test formats were
used as part of the evaluation program for the reason that they do
offer a simple method of comparison between systems.

Besides this use of standard programs, very little source
material has been developed in the area of test algorithms to
evaluate systems, especially in specific application fields.
Several programs considered to be representative of applications
were included in the evaluation. In addition, several specific
application programs have been obtained from operational systems. To
partially compensate for the lack of software impact in the standard
comparison programs, several test programs were written in more than
one language format to determine software dependence. These samples
are too small to be considered representative or to draw conclusions
from, but are interesting examples useful in demonstration of the
phenomena. Also, one application program was exercised with
different data sets to demonstrate the phenomena of data dependence.
Again, this sample is too small to be considered representative, but
is offered as interesting example.

TEST PROGRAMS

Standard test programs come ia two basic forms: instrucoion
mixes and benchmarks. For iasuruction mixes, the instrucoion
repertoire is divided into several broad classes of instructions,
such as: load/store, arithmetic/logical, fi::ed/floatina -ocint,
multiply/divide, branch, etc. Each group of instructions is given a
weight representative of its occurrence of use in programs.
Different mixes are given for different classes of applications.
Presumably, if you have an application that is characterized by a
particular mi::, then a comparison of the instruction mi:: e::ecuticn
times for two computers gives a fairly direct measure of relative
performance in that application. One of the basic problems with
instruction mi::e5 is that they are usually derived from static
sources, i.e. program listings. .Mi::es derived from dynamic sources
representing actual executed use in programs are obviously more
germane, but much more difficult to derive. Two instruction mixes
were used in the evaluation program, one representative of general
purpose applications and one very application specific.

Benchmarks carry this execution model concept further into more
exhaustive programs. A benchmark is a higher level program
consisting of a number of lower order programs that, as a set,
characterize the processing load. A benchmark is run on the -arget
computer and the performance measured. This can be a useful approach
for large scale data processing systems, but is of little value to
small systems with unique applications. Popular examples of such
benchmarks are the Whetstone and Livermore loops. These benchmarks
emphasize floating point operations which were not implemented in
the VHSM. (The VHSM-1 hardware performs only fixed point
operations.) Two benchmark programs were used in the evaluation,
primarily for comparative purposes in a compute-bound environment.

The new fields of digital signal processing have led to new
special categories of figures of merit (FOM). These FCMs are derived
from functions implemented to perform data flow and transformation
computations. These types of operations are widely used and cut
across many application fields. Data flow computations are based on
a flow of data through processing stages without storage and
sequencing constraints. (Ref. 5) Processing is limited to
fundamental operations such as addition, subtraction,
multiplication, division, and square root. The FOM is complex
operations per second (COPS), typically 4 multiplies and 5 adds.
Transformation computations arise out of the necessity to use the
frequency domain to process large quantities of data and operations
(for performing spectral analysis) or to perform filtering". The FOM
is seconds per fast Fourier transform (FFT), where the number of
points of the FFT can be as large as 1024. These are not totally
realistic benchmarks because they ignore the loading of o:;erands and
the fetching and decoding of instructions. The above FGMs*are
intended for evaluating vector processing architectures, not
architectures based on programmable ALUs such as imclemented in th<=
VHSM.

Outside of the above standard test program category, verv
little exists in the way of available software routines for use in
evaluating computer performance. Several new test routines were
created for use in the current evaluation. These programs are
algorithms representative of applications encountered in ZW and
radar systems. These algorithms are generic in nature, and are
intended to demonstrate potential usefulness of the VH5M in system
applications. In addition, one specific algorithm from an
operational system has been converted to run on a machine based on a
different architecture concept. In this case, the operation of the
VHSM can be compared directly to an operating system.

In all, eight basic programs were developed, encoded in
various languages, exercised on instruction simulations, executed on
the VHSM breadboard, and executed on a comparison military comtjuter.
These programs may be classified as follows:

Mixes

Gibson Mix
EW Instruction Mix

Benchmarks

Puzzle -'
Statistics

Applications

EW Tracker Algorithm
EW Sort Algorithm

Track Update Algorithm
.Radar Data Processing

Gibson Mix

The best-known published example of a standard instruction mix
is the Gibson mix. An instruction mix model depends on the
architecture of the CPU. The same processing needs may result in
different mixes when expressed in languages of different machines.
The Gibson mix reduces this dependence by choosing work-load
parameters representing logical rather than physical resources.
Gibson originally obtained the frequencies in this mix from a large
amount of trace data collected in IBM 7090 installations, and it;
reflects usage in scientific and technical applications. Table 1
presents the original Gibson mix, which is a set of weights
developed for 13 different classes of instructions. (Ref. 5)

Table 1

Qriginal Gibson Mi:i

Instruction Class Percsnl

Load and Store r 31.2
Fixed Point Add/Sub 6.1
Compare 3.3
Branch IS.S
Floating Add/Sub 5.9
Floating Multiply 3.8
Floating Divide 1.5
Fixed Point Multiply O.S
Fixed Point Divide 0.2
Shifting 4.4
Logical l.S
Non Register Instruction 5.3
Indexing 13.0

100.0

Quite often the Gibson mix is presented in a condensed version
of S classes of instructions. This simplification is achieved by
merging the following classes: fixed point
(add/subtract/multiply/divide), floating point
(add/subtract/multiply/divide), and shift/logical. (Ref. 7)

The Navy has long used a modified fixed point version of the
Gibson mix in evaluating and rating its standard computers. The
modified Gibson mix is derived by applying tihe weights of the three
floating point classes of instructions to the equivalent fixed point
classes of instructions, as indicated in Table 2. Since the VHSM-l
breadboard did not implement floating point instructions, this
modified-fixed point version could be used directly as a t^est
program. Since an instruction mix is nonexecutable, it was necessary
to convert the weighted instruction set into an executable program
format. The final executable program consisted of a sequence of
instructions and program loops that, when executed, resulted in 100
instructions being executed with the weights indicated in the table.

Table 2

Fixed Point Gibson Mi;-r

Instruction Class Percent

Load/Store 31
Add/Sub 13
Compare 4
Branch 17
Multiply 4
Divide 2
Shift 4
Logical 2
Non Reg. Instr. 5
Indexing IB

100

EW Instruction Mi:

To provide a baseline for the original VHSM architecture design
and an initial projected performance, a study was performed to
establish a representative EW instruction mi::. The method used was
the determination of instruction weight factors e::tracted from a
range of EW application programs. It was of particular int^r^st ^o
f?^!f;t^^ if different types of functions within the EW syst;m might
significantly impact the instruction mi::. The resultant dif-e-^n-e
m operations between system functional levels was not significant
m the systems studied. Table 3 presents the results of this

;are study. (Ref. a^ software study. (Ref. 3)

Table 3

EW/E5M Instruction Mi::

Instruction

Arith add/sub (RR)
Logical (RR)
Cond Branch (D)
Load (DX)
Store (DX)
QuicJc Branch (D)
Men: to Reg (DX)
Load (D)
Store (D)
Branch to Sub (D)
Double Prec (RR)
I/O
Others

Weigh

0 .17
0- .IS
0, .14
0, .12
0, .10
0, ,06
0, ,05
0. ,04
0. ,04
0. 04
0. 04
0. 02
0. 02

During the study, special effort was made to distinguish
between direct CD) and indexed (DK) instructions. This distinction
has not been traditionally made in previous studies of this nature,
despite the fact that execution time is significantly dependent on
the modes of instruction addressing. Table 3 shows that
register-to-register (RR) arithmetic and logical instructions make
up fully one-third of the instruction mi::. The table also shows thai
the 10 most used instruction classes account for 92%, and the 12
most used instruction classes account for 98% respectively, of the
instructions used in the EW applications studied.

Again, it was necessary to convert the above weighted
instruction mi:: into an executable program format. Since the VH3M-1
breadboard does not support the input/output functions, it was
necessary to slightly modify the mi:-: of instructions to create an
e::ecutable artificial program model representative of the EW
weighted instruction mi::. Table 4 is the actual instruction list
incorporated in the e:{ecutable model.

Table 4

EW Benchmark Instructions

Instruction Number

Arith add/sub (RR) 17
Logical (RR) 16
Cond Branch (D)(not taken) 7
Cond Branch (D)(taken) 7
Load (DX) 12
Store (DX) 13
Quick Branch (D) 7
Mem to Reg (DX) 5 '
Load (D) 4
Store (D) 4
Branch to Sub (D) 4
Double Free (RR) 4
Multiply (RR) 1

total 101

Puzzle

Puzzle is one of a set of four programs referred to as the
Berkeley Benchmarks. They were originally put together by Professor
David Patterson of U.C. Berkeley and used as the basis of several
articles published in Computer Architecture News in 19S2. Puzzle is
"an undocumented compute-bound program from Forest Baskett." It was
chosen for use in the evaluation because it measures the e::ecution
speed of a CPU on integer arithmetic, inde::ed operations, procedure
calls, and looping. The orignial source listing was provided in
Pascal, and rewritten here in AYX-14 assembly language . (Ref. 3)

statistics

Statistics is a new program extracted from an application
subroutine used to compute the means and standard deviations from a
library of parameter measurement data. It is considered to be
representative of a practical application requiring extensive
statistical analysis of engineering data. It was chosen for use in
the evaluation because of the representative nature of the
application, and because it had been originally developed and was in
use on an operational AYK-14 computer. In the version used here, the
program provides for analysis of an array of 1024 measurement
samples. No specific data table was created, since the algorithm
consists of fixed non data dependent operations. The program was
written in AYK-14 assembly language.

EW Tracker Algorithm

The EW tracker algorithm is typical of an embedded processor
application for tracking emitter pulse trains. The algorithm
technique is sometimes referred to as a table driven tracker because
the predicted parameters for signals under track are organised in
data tables or arrays. Use of table organized data was cited as one
of the gross architectural features representative of EW system
implementations that influenced the architecture design of*the VHSM.
(Ref. 1) For purposes of the evaluation, the algorithm was
implemented with a 25 point predict table and a 15 point data table.
Four different data tables were created to represent four unique
possible conditions of track data. The algorithm is very decision
oriented, another EW representative feature influencing the VHSM
design. Because of this feature, this algorithm serves as a useful
example of data dependent variations in execution rate performance.
The algorithm was encoded in two different language formats (AYK-14
assembly language and CMS-2) to also permit comparison of language
dependent variations.

EW Sort Algorithm

The EW sort algorithm is typical of an embedded processor
application for separating interleaved emitter pulse trains into
different bins. Comparison to signature library files is made based
on a three parameter signature window. Signatures that: successfully
match the library values undergo additional processing to predict
the next expected time of arrival. The algorithm was encoded in two
different language formats. Besides the basic version coded in
AYK-14 assembly language, a second version was coded using several
of the supplemental (EW) instructions developed just for the VHSM.

Track Update Algorithm

The track update algorithm is a different form of track
algorithm typical of an application in a hybrid EW signal processor.
The hybrid processor is a potentially higher throughput design
employing dedicated hardware at the input stages to match or block
input pulse descriptor words. The hardware may measure/quantify
parameter error and pass such information back to the processor for
update of the signature parameters for signals under track. The
algorithm was adapted from an actual microprogrammed track
processor. For purposes of the evaluation, the algorithm was
implemented to receive error measurements on a three parameter
signature, update the three parameter signature files, and predict
the next time-of-arrival. A 10 point input data table was
implemented. Three different data tables were created to represent
three unique possible conditions of track data, to again demonstrate
data dependent variations. The algorithm was written using several
of the supplemental instructions for the VHSM, and in assembly
language for the AYK-14.

Radar Data Processing

The radar data processing algorithm is representative of an
embedded processor application to perform post detection processing
in radar systems. Threshold crossing data from a non-coherent
detector is processed to perform an M out of N detection, centroid
the resultant detections, and format the centroided detections for
hand off to a tracking system. The algorithm was adapted from an
actual experimental radar system.

EXECUTION RATE PERFORMANCE

Observability is a fundamental problem in testing computers.
Every act of measurement introduces artifact, which is the
perturbation to a measurement brought about by the act of
measurement. In evaluating the VHSM, it was desirable to measure the
rate of execution of instructions without slowing down the actual
execution process. Normal computer operation is accessed via an I/O
channel. If measurement of execution is processed via an I/O
channel, the I/O operation becomes part of the measurement. If I/C
operation is not part of the test, it then represents an error in
the measurement.

Hardware monitors cause a minimal amount of artifact, but are
limited in the complexity of measurement that can be detected. For
the purposes of measuring software execution, it is sufficient to
simply detect the occurrence of an appropriate program instruction.
A logic analyzer was connected to the VHSM program counter, and
programmed to trigger on an appropriate (qualifier) instruction.
Most logic analyzers have the ability to generate an external strobe
pulse when triggered. The strobe pulse in turn can be used for
traditional measurement of the time interval.

In most cases, e::ecution performance has been »::press^d as a
rate at execution of instructions. It is derived by measur'nc zh^
time required to e::ecute a specific instruction loop of k--wn
length, and computing the average effective rate of e"eci^^--cn ^^at
ra^e is expressed as millions of instructions cer second^ or MI^Q
rigure 1 shows the measured execution ra-.e for the two ins*.ruction
mixes and two application algorithms. The benchmark programs <=i-z^e
and Statistics) are compute bound programs involving too many
instruction cycles to tally. Their measured execution times are
presented in Figure 2.

Execution rate was not computed for the two remaining t^st
programs. Execution of the track update algorithm involves
significant data dependence, which makes estimation of r,he a-^ua'
instruction count difficult. The radar data processing program was
written m FORTRAN and demonstrates the use of a poijular h^-he-
order language in an embedded processor application'. Since address
in^Miow^ cannot be specified in FORTRAN, memory configuration of
the VHSM could not be optimized. The execution time for the 150
point data table was 1935 usec.

The VHSM architecture includes a configuration feature wh--h
can affect performance. That feature has to do with the abil-'ty^to
allocate program and data in the split memory. Program execution
rate will differ depending on whether the data to be accessed --5 -:-
the same or alternate section of memory. Except as noted, the above
performance data represents the faster split memory configuration.

Figure 3 shows a comparison of execution performance for the
two memory configurations. The amount of improvement that can be
achieved depends very much on the type of application. A 7%
improvement was achieved with the Gibson Mix, and 11% improvement
was achieved with the track update algorithm. However, a simil^'ar
comparison with the Statistics benchmark (not shown) showed only a
1% improvement.

COMPARISON TO THE AVK-14

Operation of the AYK-14 is subject to the same observab''^-• tv
problem noted above. Because the AYK-14 was operational equirment
It was decided not to disassemble and instrument the actual '
hardware. Instead, appropriate breakpoints were set in the test
programs to read the computer clock register. Due to an in-^t-a'
hardware availability problem, execution of some routines was I"so
evaluated using a non-hardware AYK-14 configuration. This technique
involved use of the AYK-14 timing simulation model which is cart o^"
the MTASS package.

10

en a.

2
a

on
c
0
3

X
UJ

Figure 1 : VHSM Execution Rate
(Spitt Memory Conftguration)

3.S -

3 -

2.S -

2 -

1.S -

1 -

0.3

3.6:

2.93

1.69

Gtbson Mix EIW Instr. Mtx EW Tracker

Test Program

EW Sort

1.1

Figure 2: VHSM Benchmark Execution
(Spilt Memory Configuration)

as

1 -

0.9 -

o.a -

0.7 -

0.6 -

0.3 -

O.4. -

0.3 -

0.2 -

0.1 -
21.30

J / J ,' / y- / / / ^ / ^ ,' -r
Puzzle Statistics

Test Program

11

8
E

E

c

5

a.

2
o
a:
c
0

X

Figure 3: Memory ANocation Comparison

Gibson Mix Track Update

___ Test Program
klZl Integrated Memory [V^ Split Memory

Figure 4: AYK—14 Execution Comparison
(Hardware Execution Rate — Gibson Mix)

AYK— 14. VHSM

Hardware Resource

12

Figure 4 shows comparative hardware e:iecu-bion rates for the
Gibson Mi::. Figure 5 shows comparative hardware eiiecution times for
the Puzzle benchmark and radar data processing. The improvement
factor in hardware e::ecution ranged from 3.5 to 4.3. A similiar
comparison based on execution of the Statistics benchmark (not
shown) showed only a 3.0:1 improvement. Figure S shows comparative
hardware e::ecution times for the track update algorithm. Slightly-
different versions of the algorithm were exercised in this
comparison. Several AYK-14 assembly instructions were replaced by
new instructions in the VHSM version. The improvement factor in this
comparison was 4.6

Figure 7 shows the execution rate comparison resulting from use
of the AVK-14 MTASS simulation. The EW tracker algorithm was
evaluated in both assembly language (Tracker/AL) and higher order
language (Tracker/HOL) formats. Execution improvement factors in
this comparison ranged from 4.3 to 5.4.

COMPARISON TO OTHER PROCESSORS

Development of the VHSM was initiated in 1380 to fill a
perceived void for a high performance embedded processor. Processor
development has continued to receive much attention and investment
both in the military and commercial market. The initial architecture
studies projected performance against then identifyable or projected
military processors. Since then, new military programs have been
initiated leading to new standard military processors. The
commercial market has mushroomed and produced several major series
of very advanced processors. These products are also being accepted
as embedded processors in military systems.

A natural question arises as to whether or not the original
performance projections against older products is sufficient to
justify use of the VHSM. Commercial processor evaluation is
controversial and the test programs usually cited differ
significantly from the programs used in the VHSM evaluation . The
following comparisons to newer products has been prepared using the
best available information. Comparisons are made to the AVK-14
Single Card Processor (SCP) and the National Series 32000 CPUs. For
completeness, a comparison is also made to the standard for high
performance processing, the bi-polar bit-slice microprocessor, and
the first programmable VHSIC signal processor.

AYK-14 Single Card Processor (SCP)

The SCP is a newer, enhanced instruction version of the AVK-14
architecture. It is an improved performance processor resultant from
the AVK-14 Pre-Plannned Product Improvement (PPPI) program. The
implementation technology is state-of-the-art CMOS ga-ce array, very
similar to the technology being used to fabricate the second
generation VHSM. Availability is currently very limited, preventing
any actual hardware evaluation.

13

E
1=

I
3
0

Figure 5: AYK—14 Execution Comparison
(Hardware Execution TTme)

Puzzle

3.30

V77777}^J^^
Radar Data

Test Program
AYK- 1 4. "^"^ [V\] VHSM

2
E

o
E

3

Figure 6: AYK—14 Execution Comparison
(Hard. Exec. TTme — Trk. Update Algor.)

13S.90

30.50

AYK- 1A VHSM

Hardware Resource

14

tn a.

2

I
%
X

UJ

Figure 7: AYK-14 Execution Comparison

3.5 -

2 -

2.5 -

2 -

1.5 -

1 -

0.5 -

EW Ins-tr. Mix

(MTASS Simulated Execution Rate)

2.37

o.se

Tracker/AL Trackep/HOL

Test Program
IZZl AYK-14. !X3 VHSM

e// Sort

a

c o
3

X
lit

3.2

Figure 8: SCP Execution Comparison
(Proj. Execution Rate — 90X Cache Hit)

Gibson Mix EW Instr. Mix

Test Program
AYK-14. SCP rV\! VMSM

15

Performance projections have been prepared using execution
times available in the public domain. (Ref, 11) The SC? architecture
includes cache memory for very fast memory access time. The
execution times are considered preliminary and are based on an
assumed 90% cache hit rate. Figure 3 compares the execution rate for
two instruction mixes. (It should be noted that SCP performance has
been stated to be 1.1 to 1.2 MIPS on the Gibson Mix, under
unspecified conditions.).

National Series 32000 (NS32000)

The National NS32000 family is one of the leading families of
32-bit CPUs. All CPUs are based on a 32-bit (internal) bus
architecture. Comparison is made against two versions of the first
generation CPU (16-bit and 32-bit data bus) and the second
generation CPU with enhanced internal micro-architecture (NS32332).
Figure 9 compares execution rate for the EW instruction mix. All
data for 10 Mhz. versions (-10) is measured, performance for the 15
Mhz. version (-15) is a projection. (Ref. 12)

Microprogrammed Bi-polar

The microprogrammed bi-polar bit-slice microprocessor has
historically (10+ years) represented the standard for high
performance processing. In addition to its basic high clock rate,
its hardware architecture and instruction set can be customized tc
any particular application (i.e., algorithm). The track update
algorithm used in this evaluation was originally implemented in a
bi-polar bit-slice (2901 based) microprocessor. For this evaluation,
the algorithm was coded in assembly language for execution on the
AYK-14 and modified to use several new supplemental instructions for
execution on the VHSM. Comparison is therefore being made on a
functional equivalent algorithm rather than identical coding as in
other previous comparisons.

Figure 10 shows comparative hardware execution times. The
special purpose micro-coded bi-polar processor is approximately 2.5
times faster in execution than the VHSM. A portion of this
difference can be attributed to the fact that the bit-slice
architecture word length was customized to this specific
application, while the VHSM required the use of (slower) double
precision instructions for some of the signature parameters.

VHSIC Signal Processor

The first generally programmable Very High Speed Integrated
Circuit (VHSIC) signal processor was developed by TRW as part of the
VHSIC EW Brassboard. Its architecture incorporated six (5) VHSIC
Phase 1 chip types designed and implemented using 1.25 micron
feature size technology. The CPU contains three VHSIC arithmetic
chips: two registered arithmetic logic units (RALUs) and a
multiply-accumulate chip (MAC). The processor is programmable at
both the macro and micro instruction level. The EW Brassboard is
currently undergoing evaluation by NRL.

16

en
a.
1
2 a a:
c
0

%

2.2

Figure 9: NS32000 Exec. Companso
(EIW Ins-truc-tion Mix)

n

1.06

1.89

32018-10 32032-10 32332-10 32332-IS

Processor Type

2.93

VHSM

2
0

J
1—
c

.0

35

Figure 10: Bi —polar Exec. Comparison
(Track Update Functional Elquivalent)

12_00

VHSM 3i — polar

Processor Type

Part of the Brassboard evaluation involved translating the
Gibson mi:i and the EW instruction mi:: into VHSIC macro instructions.
Some of the mi:: instructions do not translate, so similar or nearest
equivalent instructions were used. Also, programming at the macro
instruction level does not allow access to the dual RALU resources
of the CPU, and therefore cannot demonstrate full potential of zhs
architecture.

Actual hardware e::ecution was measured by counting the number
of clock cycles required to e::ecute the test mi::es. Figures 11 and
12 compare e::ecution rates for the Gibson mi:: and the TA instruction
mi:i, respectively. Performance of the VHSM is quite comparable to
the VHSIC signal processor, with the VHSM slightly poorer in general
purpose applications (the Gibson mi::) and slightly better in SW
applications (the EW instruction mi::).

PROGRAMMABILITY AND LANGUAGE DEPENDENT VARIATIONS

One of the goals of the evaluation project was to demonstrate
programmability of the VHSM breadboard. All test programs were
written using MTASS, the Navy standard support software package.
Programs were written in AYK-14 assembly language and the higher
order languages CMS-2 and FORTRAN. One algorithm was written in two
language formats to demonstrate software impact on e::ecution
performance and quantity and quality of resultant code. In addition,
several programs were written incorporating several of the new
instruction extensions unique to the VHSM. These routines are very
small samples to demonstrate language dependent phenomena but not to
quantify it. It should be recognized that programmer ability and
e::perience can also significantly impact these same aspects of
resultant code.

EW Tracker Algorithm

Implementation of the EW tracker algorithm in two different
language formats permits comparison of language dependent impact on
e::ecution performance. Figure 13 shows e::ecution performance
e::pressed in terms of instruction execution rate. Such a comparison
based on instruction e::ecution rate is misleading because the
different language formats result in different sizes of executable
code. In fact, the CMS-2 compiled code was more "efficient" in terms
of the resultant number of instructions. The assembly language
version of the algorithm actually resulted in 11% more code being
generated.

Figure 14 presents a more meaningful comparison based on the
execution frequency of the algorithm. In both figures, data is
presented for actual hardware execution in the VHSM and for
simulated execution in the AYK-14 (MTASS SIM.). The assembly
language version was measured to be 39% faster than the CMS-2
version. By contrast, the MTASS simulation projected that the
assembly language version would only be 11% faster (in the AVK-14)
than the CMS-2 version.

18

en
a.

J
o a:
c
0

■43

X
UJ

a.

5 o
a:

0

3

X
UJ

Fig. 11: VHSIC Macro Exec. Ccmpariscn
 (Hard. Exac. Rata - Gibson Mtx)

3.S

3 -

2.S

2 -,

1.5 -r

0.3 -

VHSM VHSIC SP

Processor Type

Fig, 12: VHSIC Macro Exec. Comparison
(Hard. Exec. Rate - EW Instr. Mix)

VHSM /HSIC SP

Processor Type

19

en
a.

2
a

Q:

c
.0

9

C
o

•J
o

o
9

o

.2 3

u
E

•n o
ai
5

Figure 13: Lang. Dependent Exec. Rate
(Instrucrtion Ejcecution Rate)

3.5 -

2.5 -'

O.S

1.5 -

VHSM MTASS SIM.

DA/ Tracker Algar. Execu-tion Environment
\ZZ} Assennbly PC^ CMS-2

Figure 1 4:

less

Lang, Dependent Exec
(Algorithm Execution Rote)

Rate

313 237

VHSM MTASS SIM.

E(V Tracker Algor. Execution Environment
ly/I Assembly PNTX] CMS-2

20

EW Sort Algorithm

The SW sort algorithm was selected to demonstrate the use of
several "new" instructions which were implemented in the VHSM to ex-
tend the AYK-14 instruction set (PLUS), primarily for SW applications.
The primary new instruction of interest in this application was one of
si:: new compare-between-limits instructions. The one used here calls
for the upper and lower comparison limits to be held in consecutive
register locations. Use of this special purpose instruction resulted in
coding which required the execution of approximately 1/3 fewer in-
structions in execution of the algorithm {239 versus 45B). This re-
flects a desirable resultant feature of more compact and readable code.

Figure 15 shows execution performance expressed in terms of
instruction execution rate. Because the execution time of this new
instruction (0.540 usec.) is several times greater than the optimized
primitive instructions (0.130 usec), the resultant effective in-
struction execution rate is significantly lower than code written in
normal AYK-14 assembly language. Figure IS shows that when a more
meaningful comparison is made based on the algorithm execution rate,
the algorithm version employing the new instruction is found to be
actually faster (approximately 2%) than the normal AYK-14 format
version.

Track Update Algorithm

The track update algorithm was also used to demonstrate use of
.several "new" instructions. The new instructions of interest in this
application were enhanced branch (jump) and direct memory in-
structions. These instructions can be expected to contribute to ease of
programmability and some reduction in the size of executable code, but
not to the extent demonstrated with the EW sort algorithm. More
improvement could be achieved by restructuring the algorithm to take
advantage of the (potentially) more powerful EW oriented compare-
between-limits instructions. Only a single language format version
(PLUS) was executed so no direct language dependent comparison can be
made.

DATA DEPENDENT VARIATIONS

One application program was executed with different data sets
as inputs. These data sets represent different data conditions which
can impact performance for decision oriented algorithms, such as found
in typical EW applications. This routine was again only intended to
demonstrate the phenomena.

EW Tracker Algorithm

Four data tables were created for use with this algorithm to
represent typical conditions encountered by a track algorithm: no data,
small error, large error, and lost track. Figure 17 shows that the
instruction execution rate shows minimal data dependence. Figure 13
presents a more meaningful comparison based on the execution time of
the algorithm. The execution time can be seen to vary over a range of
2.2:1 for the assembly language version and over a range of 4.3:1 for
CMS-2 version.

21

en
a.
5

3
o

Oi.

c
.0

3
9

l2
c
o

:s o
i

o

0

I

Figure 15: Enhanced Lang
(instruction Execution Rcta)

Exec, Rote

h
Ui

E

o
5

assembly PLUS

EW Sort Algorithm Language Format

Figure 16: Enhanced Lang. Exec. Rate
(Algorithm Execution Rate)

a - 7S30 7968

^/^^Z^ y//^^
7 - '

vy%^%w^
a - yy//yy ̂ ////V// /////V//^
s - 9> ,,

^^^

2 - W^A ^^^m
2 -

1 -

O - w « ^»
assennbly PLUS

EW Sort Algorithm Language Farmat

22

a.
1
3 o
Q:

c

I
c
0

c

Figure 17: Data Dependent Exec. Rat<
(Instruetion Execution Rate)

3.5

2.S -

1.5

O.S -

No Data Small Error Large Error Lost Track

I ■ - E^ Tracker Algorithm Data Condition
IZIZI AYK-14. Assembly PstX] CMS-2

O

s
0

E

c o
-■a
3

X
u
S
5
u
o

4.00

Figure 18: Data Dependent Exec. Time
CAIgorithm Ejcecution Time)

^ 3SO

300 -

200 -

ISO -

100 -

No Data Small Error Large Error

^_^ EW Tracker Algorithm Data Condition
l/^XI AYK-14 Assembly

Lost TracK

iW] CMS—2

23

SUMMARY AND CONCLUSIONS

The VHSM evaluation project undertook evaluation of the 7HSU
first generation breadboard for both its execution performance and
its cost^effectiveness. A series of test programs comprised of
instruction mixes, benchmarks, and application programs were
developed to carry out the project. Performance of the VHSM was
demonstrated by actual hardware execution of test programs.
Comparison was made by both hardware and simulated execution of an
AYK-14 computer and other processors. Cost effectiveness was
demonstrated by creating test programs based on familiar instruction
sets and higher order languages, and implemented using Navy standard
support software.

Instruction execution rate of the VHSM was demonstrated to be
in the 2.9 to 3.S MIPS range for EW applications and 1.7 MIPS for
the more general purpose Gibson mix. Performance improvement
achieved by using the split memory configuration was shown to be as
much as 11?4 but quite application dependent. Direct comparison of
the VHSM to the current AYK-14 computer showed that the VHSM is
capable of achieving performance improvement ranging from 3.0 to
4.9.

Projected comparisons made against the new AYK-14 3CP show
that the VHSM can expect to achieve performance improvement ranginc
from 1.7 to 2.5. It has also been shown that the VHSM offers
significantly better performance than the new 32-bit architecture
commercial processors in EW applications. However, microprogrammed
bi-polar microprocessors can significantly outperform the VHSM when
custom designed and optimized for execution of a specific algorithm.
It was also shown that the VHSM can be competative (performance
wise) with processors implemented using the new VHSIC implementation
technology.

Test routines were written in different language formats to
demonstrate ability to support familiar instruction set
architectures and support software. Several routines were executed
in different formats to demonstrate language dependent variations.
It was demonstrated that different language formats will result in
different sized executable code, but that the shortest code is not
necessarily the fastest to execute. It was also shown that comparing
the overall algorithm execution rate is more meaningful than
comparing just the instruction execution rate.

Several test programs demonstrated that existing Navy MTAS3
could be used to write programs incorporating the new extended
instructions. It was further demonstrated that use of these
instructions could result in code that was significantly more
compact and readable. An example of data dependent varia'ions was
presented to show that algorithm execution time can vary
significantly in decision oriented algorithms typical of EW
applications.

24

ACKNOWLEDGMENTS

The au^bhor acknowledges the efforts and contributions of those
who made it possible to carry out this evaluation of the Very High
Speed Microprocessor first generation breadboard:

Stephen J. Forde III of Sanders Associates for creating, coding
and executing the EW Instruction Mi::, the SW Tracker Algorithm, and
the EW Sort Algorithm in the VHSM.

Roy Robinson of Quest Research Corp. for coding and executing
t-he remaining test programs in the VHSM, and programs in the AYK-14
and VHSIC signal processor.

Sukumal Telepatra for compiling the projected performance for
additional processors.

The NRL Electronic Warfare Support Measures (ESM) Branch
management for guidance and direction throughout the program.

Mr. R. J. Orsino (formerly of the ESM Branch) for his guidance
and direction throughout the program.

REFERENCES

1. R. M. Christiansen, "A Low Life-Cycle Cost EW Microprocessor,"
19B2 Government Microcircuit Applications Conference (GGMAC-32)

2. "1381 Technology Forecast - Software," Electronic Design, Jan. 3,
1981

3. R. M. Christiansen, "An EW Microprocessor for Technology
Insertion," 1334 Government Microcircuit Applications Conference
(GOMAC-84)

4. Boris Beizer, "Micro-Analysis of Computer System Performance,"
Van Norstrand Reinhold Co. New York, 1978

5. Edwin M. Drogin, "Pipeline Architecture Battles Array," Microwave
Systems News, V. 10, No. 10, p. 92 1980

S. Gibson, J. C, "The Gibson Mi:;," IBM Tech. Rept. TRQ0.2043 (June
1370)

7. Ferrari, D., "Computer Systems Performance Evaluation,"
Prentice-Hall, Englewood Cliffs, NJ, 1978

3. Sanders Associates, "Design Microprocessor Architecture for ZW
Applications," contract No. N00014-31-C-2317 Final Recort, Feb. 25,
1332

3. The MSISOOO Benchmarks, National Semicondutor Corp., August 1333.

25

10. Sanders Associates, "High-Speed Microprocessor Breadboard Test
Report," contract No. N00014-82-C-2347, 20 July, 1393

11. AN/A?K-14(V) Navy Standard Airborne Computer Technical
Description, Control Data Corp. document G13593, Dec. 1384

12. National Semiconductor, private communication, June 30, 13SS

26

U230459
01 S

> s <=; W
rt o • c
rt 3 en ^
3 rt • ro
•• ro I-i

i-i 2i H-
(D CO 3

H^ <J rt
fD " 93 CD
O M 3
^ n CL
• > ►Ti CB

o 3
t-< CO rt
H- VO rt
cr bj cw
i-i vD H
(U J>- (U
H o CL

,■ ■ ■ ■

c
rt
(D

O
0

-n 2

^ >

< c 5;«
C I"
m W
«»
w
o
o

3 3

o
m

3 m
>

o J3
p O
I

to
o !;
W (X)

si o
oi >
O H
2 o O X

-<

m
■o
>
H

m

X
m
Z
>
<

H
Z
3]

■XJ O
> (/I

-I >
2 O

>
z
o

3
>

O" " -n

> S

